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Abstract—The lobula giant movement detector (LGMD) is an 

identified neuron in the locust brain that responds most strongly 
to the images of an approaching object such as a predator. Its 
computational model can cope with unpredictable environments 
without using specific object recognition algorithms. In this 
paper, a LGMD based neural network is proposed with a new 
feature enhancement mechanism to enhance the expanded edges 
of colliding objects via grouped excitation for collision detection 
with complex backgrounds. The isolated excitation caused by 
background detail will be filtered out by the new mechanism. 
Off-line tests demonstrated the advantages of the presented 
LGMD based neural network in complex backgrounds. Real time 
robotics experiments using the LGMD based neural network as 
the only sensory system showed that the system worked reliably 
in a wide range of conditions, in particular, the robot was able to 
navigate in arenas with structured surrounds and complex 
backgrounds. 
 

Index Terms—collision detection, dynamic visual scene, visual 
neural network, complex environment, mobile robot  
 

I. INTRODUCTION 
he ability to avoid collisions is important for many 

mobile/intelligent machines. Mobile robots have used 
several kind of sensors, such as visual, ultrasound, infra-red, 
laser, and mini-radar, for object detection (for example, [10, 1, 
38, 2, 21]). However, it is still very difficult for a robot to run 
autonomously without collision in complex, outdoor 
environments without human intervention. For intelligent 
machines one of the greatest challenges is to understand and 
cope with dynamic scenes [6]. Visual sensors have evolved as 
an important organ (eyes) for animals to exploit the plentiful 
cues in the real visual world and eyes play an important role in 
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the survival of animals. However, artificial robot vision 
systems have not yet been able to quickly and cheaply extract 
the wealth information present in the visual environment [20, 
31, 8].  

For animals, such as insects, the ability to detect 
approaching objects is important, serving both to prevent 
collision as the animal moves and also to avoid capture by 
predators [28, 33]. Evolved over millions of years, the visual 
collision avoidance systems in insects are both efficient and 
reliable. The neural circuits processing visual information in 
insects are relatively simple compared to those in the human 
brain and are a perfect model for the optical collision 
avoidance sensors that should equip mobile intelligent 
machines [29]. As an example, the ‘Elementary Motion 
Detectors’ (EMDs) of the fly have been realised electronically 
and used to control a robot avoiding stationary objects or 
making a straight path as it localises and  approaches a sound 
source (recent examples, [16, 19, 15, 37], reviewed by [12]). 
An identified interneuron in locust visual system, the lobula 
giant movement detector (LGMD), which responds vigorously 
to looming objects, is another neural model to be applied in 
autonomous robots [29]. 

The lobula giant movement detector (LGMD) is a large 
visual interneuron in the optic lobe of the locust [23] that 
responds most strongly to approaching objects [34, 26]. It is 
tightly tuned to respond to objects approaching the locust on a 
direct collision course [17], but produces little or no response 
to receding objects [26]. This makes the LGMD an ideal 
template to develop specialised sensors for automatic collision 
avoidance. Also, the electrophysiological knowledge about the 
LGMD neuron and its afferent pathway revealed in the last 
several decades (e.g., [23, 30, 34, 26] makes it possible to 
model it.  

A functional neural network based on the LGMD’s input 
circuitry was developed by Rind and Bramwell [27]. This 
neural network showed the same selectivity as the LGMD 
neuron for approaching rather than receding objects and 
responded best to objects approaching on collision rather than 
near-miss trajectories. The expanding edges of colliding 
objects and the lateral inhibition were the key features 
computed by the model. This neural network has also been 
used to mediate collision avoidance in a real-world 
environment by incorporating it into the control structure of a 
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miniature mobile robot [3, 4]. The collision avoidance 
controlled via the LGMD was successful on at least 69% of 
occasions, and for half of the speeds tested, it was successful 
on over 90% of occasions [4]. 

In real world challenges, robots have to deal with colliding 
objects against complex visual background. The previous 
LGMD based neural network either challenged only by pure 
computer generated visual stimuli [27], or tested in a simple, 
structured environment [4, 32]. The robustness of the neural 
network needs to be improved to increase the success rate in 
deal with colliding objects against a complex background.  

This study further develops the LGMD based neural 
network to detect colliding objects in complex background. 
Based on the previous LGMD neural networks [27, 4, 32, 35], 
we propose a neural network to form the collision detection 
system with a new mechanism processing the excitations 
(refer to pixels with higher value hereafter) before the LGMD 
cell gathers excitations. The new mechanism favours grouped 
excitations by enhancing them and allowing them reach to 
next layer without decay; however the isolated excitations is 
not enhanced and is therefore subject to decay. This is 
consistent with the recent finding that the summation within 
the real LGMD’s dendritic tree is highly non-linear and 
probably its dendritic tree structure and conductancees may 
play an important role in filtering incoming excitation and 
inhibition [14]. When integrated with a mobile robot, a special 
mechanism is used to regulate the response of the network by 
mediating the threshold. With an adaptable threshold, the 
system is able to work under extremely bright or dark 
conditions. Experiments are carried out to test the feasibility 
and advantages of the new collision detection system in 
complex environments with different conditions.  

 

II. FORMULATION OF THE SYSTEM 
The LGMD based neural network proposed in this paper was 
based on previous studies described in [27, 4, 32, 35]. The 
LGMD neural network [27, 4] was composed of four groups 
of cells - photoreceptor, excitatory, inhibitory and summing, 
and two single cells - feed-forward inhibition and LGMD 
[27]. These groups of cells were also used as a basic for the 
modified neural network (Figure 1). To improve the 
robustness of the LGMD based neural network in situations 
where the background of a visual scene is complex, a new 
layer of grouping cells (G cells) were added to enhance the 
visual feature defining a colliding object and filter visual 
details irrelevant to the collision detection task. When 
integrated with robots, new cell feed-forward mediation 
(FFM), will be introduced to mediate the response of the 
LGMD cell by varying its threshold to cope with extreme 
luminance conditions. The proposed neural network (shown in 
Figure 1) used in the paper will be described in detail in the 
next part (please note that the G cells and FFM cell may not 
have exact counterparts in real locusts).  
 

A. P layer 
The first layer of the neural network is the photoreceptor P 

cells arranged in a matrix; the luminance Lf of each pixel in 
the input image is captured by each photoreceptor cell, the 
change of luminance Pf between frames of the image sequence 
is calculated and forms the output of this layer. The output of 
a cell in this layer is defined by equation: 
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where Pf(x,y) is the change of luminance corresponding to 
pixel (x,y) at frame f, x and y are the indices of the matrix, Lf 
and Lf-1 are the luminance, subscript f denotes the current 
frame and f-1 denotes the previous frame, np defines the 
maximum number of frames (or time steps) the persistence of 
the luminance change can last, the persistence coefficient pi 
∈(0,1) and 
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where ),( −∞+∞∈µ  and i indicates the previous ith frame 
counted from the current frame f. Note that the LGMD neural 
network detects potential collision by responding expansion of 
the image edges, a strategy that needs computation rather than 
a strategy relying on object. If there is no difference between 
successive images, the P cells are not excited. 

 

 
 
 

 
 
Fig.1 A schematic illustration of the LGMD based neural network for 
collision detection. There are five groups of cells and two single cells: 
photoreceptor cells (P); excitatory and inhibitory cells (E and I); summing 
cells (S); grouping cells (G); the LGMD cell and the feed forward inhibition 
cell (FFI). The input of the P cells is the luminance change. Lateral inhibition 
is indicated with dotted lines and has one frame delay. Excitation is indicated 
with black lines and has no delay. The FFI also has one frame delay. The input 
to FFI is luminance change from photoreceptor cells  
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B.  I E layer 
The output of the P cells forms the inputs to two separate 

cell types in the next layer. One type is called excitatory cells, 
through which excitation is passed directly to their retinotopic 
counterpart in the third layer, the S layer. The excitation E(x, 
y) in an E cell has the same value as that in the corresponding 
P cell. The second cell type  are lateral inhibition cells, which 
pass inhibition, after 1 image frame delay, to their retinotopic 
counterpart’s neighbouring cells in the S layer with one frame 
delay. The gathered strength of inhibition of a cell in this layer 
is given by: 
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i j

f
   (3) 

where If(x,y) is the inhibition corresponds to pixel (x,y) at 
current frame f, wI(i, j) is the local inhibition weight. Please 
note i and j are not allowed to be equal to zero simultaneously. 
This means inhibition will only be allowed to spread out to its 
neighbouring cells in next layer rather than to its direct 
counterpart in the next layer.  

 

C.  S layer 
The excitatory flow from the E cells and inhibition from the 

I cells is summed by the S cells using the following equation: 
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where WI is the inhibition weight. 

 

D.  G layer 
In the previous LGMD neural networks [27, 4] S cells 

connect directly with the LGMD and the LGMD sums input 

from all the S cells. In the LGMD based neural network, the 
expanded edges which are represented by clustered 
excitations, should be enhanced to extract colliding objects 
against complex backgrounds. Therefore, we have added a 
new layer, G cells, between the S cells and LGMD (Figure 1). 
A mechanism allows clusters of excitation in the S cells to 
easily reach the G layer and therefore provide a greater input 
to the membrane potential of the LGMD neuron compared 
with the input of a single S cell (as illustrated in Figure 2). To 
implement the new mechanism, the excitation in an S cell 
passed to the G layer is multiplied by a passing coefficient Ce. 
The coefficient is determined by the cell’s surrounding 
neighbours, i.e., defined by a convolution process  
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where we(i, j) represents the influence of its neighbours and 
this operation can be simplified as a convolution mask [7] and 
the passing coefficients can be computed in a matrix, 
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where [we] is the convolution mask, [Ce]f is the passing 
coefficient matrix, ⊗ denotes the convolution operation and 
[S]f is the excitation matrix in the S layer. 

When reaches the G layer, the excitation correspond to cell 
(x, y) becomes,  
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where ω is a scale and computed at every frame by  

 
 

G layer 

S layer

LGMD cell

 
Fig.2 A schematic illustration of the grouped excitation processing 
mechanism. The cells(or pixels in an image) surrounded by strong excitations 
gain bigger passing coefficients and the isolated excitations get smaller 
passing coefficients and may be ruled out in the next layer G by threshold. 
Circles represent excitation in S and G layers. The strength of excitation in S 
layer, G layer and LGMD cell is indicated by grey levels where black 
represents the strongest excitation. S layer and G layer have one-to-one 
connection type. 
 

 
 

 

 

Fig.3 The feed forward mediation (FFM) cell is introduced to mediate LGMD 
cell’s threshold when the images fed to the neural network are captured by a 
camera with white point calibration. The input to FFM is luminance through 
luminance cells L. 
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Cw is a constant, ∆c is a small real number and max(abs[Ce]f) 
is the largest element in matrix abs[Ce]f. As shown in Figure 
2, the grouped excitations in the S layer (represent edges) 
become darker (stronger) when reaching the G layer and the 
isolated excitations become lighter (weaker). However, the 
previous unexcited cells will remain unexcited after the 
grouped excitation processing as indicated in equation (7).  

From S layer to G layer, we set a threshold to filter decayed 
excitations,  
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where Cde is the decay coefficient and Cde ∈(0,1), Tde is the 
decay threshold. The presented grouped excitation (G) 
processing via equation (7) together with decay (D) 
processing via equation (9) can not only enhance the edges, 
but also filter out background detail caused excitations. The 
LGMD based neural network with grouped excitation and 
decay (GD) processing will be used and compared in the later 
experiments. 

 

E.  LGMD cell 
The membrane potential of the LGMD cell Κf, at frame f is 

summed after G layer with a rectifying operation, which will 
turn the responses in negative values to positive before 
summing, as described by the following equation, 
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The membrane potential of the LGMD cell Κf is then 

transformed to sigmoid function as, 
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where ncell is the total number of the cells in G layer. Since Κf 
is greater than zero according to equation (10), the sigmoid 
membrane potential κf ∈(0.5~1). 

 

F. FFM cell 
The collision detection system consists of the LGMD based 

neural network and a CCD camera, which feeds the input 
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Fig.4 The local weights of inhibition spreading from the centre cell (in the IE 
layer) to neighbouring cells (in the S layer). The number in each cell 
represents the percentage of value it gains from the central pixel 
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Fig.5 Off-line comparison when approaching an objecct. (a), the sample 
frames of the video clip to test the network. The video clip was taking with a 
robot approaching the block at speed 5.6cm/s and 24 frames per second. The 
collision happened at frame 91. (b), the sigmoid membrane potential at 
different noise level, with GD processing; collsions were detected at frame 84 
when noise level is less than or equal 50. The straight horizontal line around 
0.89 membrane potential is the threshold. (c), the sigmoid membrane potential 
at different noise level, without GD processing; will give false collision signal 
if noise slightly excedes 10. The thresholds have been reset to ensure both 
networks detect collision at frame 84, when no image noise presented. (d), the 
image with added noise at frame 84 with the presented noise level kn=50. (e), 
the image before GD processing at frame 84. (f), the image after GD 
processing. 
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images to the network. The cameras of some robots have the 
ability to maintain a balanced image contrast (e.g., auto iris, 
K-team, Lausanne, Switzerland, http://www.k-team.com). 
Usually, a standard procedure (white point calibration) is used 
in the camera’s hardware to normalize contrast within the 
image. This ability allows the robot to see objects under both 
dark and bright conditions and could be very important for 
feeding proper images to the LGMD based neural network 
when the robot is operating in dark or bright environments. 
However, this mechanism has a major shortcoming, for 
example, objects may have little contrast against the 
background if very bright objects or light sources get into the 
view field. The network may respond to the colliding objects 
too late in this case or too early in an opposite scenario [39]. 
To compensate for the drop of excitation in this situation, an 
adjustable threshold is needed. When integrated with a robot, 
threshold Ts can be used, 

 
mpmpltlts TTT αα +=                              (12) 

 
where Tlt is the adaptable part, Tmp is the constant part, αlt and 
αmp are the coefficients. αlt >0 when integrated with the robot 

(the fed images are light compensated); otherwise, αlt =0. 
The feed forward mediation (FFM) (Figure 3) is introduced 

to adapt the threshold in response to low contrast colliding 
objects in situations when most parts of the input image are 
dim,  
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where Tito is the initial value of the Tit,  αL is a coefficient, ∆Tit 
is a constant, Пit

u and Пit
l  are the upper and lower boundary 

respectively, the Ld is gathered as,  
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where nc and nr are the number of columns and rows in the 

luminance matrix [L]f , [maxL] f is the row of the largest 
elements in each column of [L] f and [maxLT] f is the row of the 
largest elements in each column of [L] f

 T
. With the above 

mechanism, the LGMD based neural network is more likely to 
respond to colliding objects since threshold can be lowered.  
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Fig.6 Comparison of the networks with/without GD processing at different 
approaching speeds. (a), the sample frames of the video clips, which was 
taking by a robot’s camera when the robot was approaching an inverted V 
shaped object at speed 3.2cm/s) at 24 frames per second. Collisions happened 
at frame 87. (b), the sample frames of the video clips with robot speed at 
9.6cm/s. Collision happened at frame 51. (c), the response of the membrane 
potential to the 3.2cm/s video. Collision detected at frame 83 with GD 
processing. (d), the response of the membrane potential to the 9.6cm/s video. 
Collision detected at frame 47 with GD processing. The horizontal straight 
line around 0.89 membrane potential value is the threshold for network with 
GD processing. 
 

 
 

TABLE 1. THE PARAMETERS OF THE LGMD BASED NEURAL NETWORK 
 

name value name value name value 
p 0 αL 1 nsp 4 
WI 0.3 ∆Tlt 0.03 nts 4 
Cde 0.5 Пlt

u 230 αf-1
F 0 

Tde 15 Пlt
l 180 αffi 0.02 

ncell 13,000 Tlto 0 TFO 10 
αmp 1 nr 100 Cw 4 
Tmp 0.86 nc 130 ∆c 0.01 
np 1     
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G. Spiking mechanism 
The collision alarm is finally decided by a spiking 

mechanism. If the membrane potential κf exceeds the threshold 
Ts, a spike is produced,  
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where 1 represents a spike, 0 means no spike. A collision is 
detected if there are nsp spikes in nts time steps (nsp.<= nts) 
[35], i.e.,  
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where the value of Cfinal turns to be TRUE when collision is 
detected. The robot’s avoidance behaviour is initiated once 
collision is detected. However, spikes may be suppressed by 
the FFI cell when the robot is turning. 

 

H. The feed forward inhibition (FFI) cell 
If it is not suppressed during turning, the network may 

produce spikes and even false collision alerts because of the 
sudden change in the visual scene. The feed forward 
inhibition and lateral inhibition work together to cope with 
such whole field movement [32]. The FFI excitation at current 
frame is gathered from the photoreceptor cells with one frame 
delay, 
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where αF

f-j is the persistence coefficient for FFI and αF
f-j 

∈(0,1), na defines how many time steps the persistence can 
last.  

Once Ff exceeds its threshold TFFI, spikes in the LGMD are 
inhibited immediately. The threshold TFFI  is also adaptable,  
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where TFO is the initial value of the TFFI  , the adaptable 
threshold is decided by the previous TFFI and αffi  is a 
coefficient. 

As described in the above subsections, the LGMD based 
collision detection system only involves low level image 
processing, such as excitation transferring and neighbouring 
operation; computationally expensive methods, such as object 
recognition or scene analysis, are not used. Because of this, 
the collision detection system is able to work in real time and 
is independent of object classification. 

 

III. TEST THE COLLISION DETECTION SYSTEM 
 
Two kinds of experiments will be carried out to test the 

feasibility and robustness of the above collision detection 
system. One is the off-line test which mainly tests the effects 
of the added further excitation processing mechanism against 
complex backgrounds using recorded video clips. Then, the 
neural network is integrated with a Khepera robot (K-Team, 
Switzerland, http://www.k-team.com) to be tested in real time 
experiments.  

 

A.  Parameters and system setting 
To obtain images, a K2D video turret (K-Team, 

Switzerland) with a CCD was mounted on top of the Khepera 
robot. The main properties of the camera are detailed in K2D 
video turret user manual, K-Team, Switzerland. We used the 
CCD camera, to sample images in real time. The camera was 
working at 25 frames per second in the experiment.  

Parameters of the LGMD based collision detection system 
were set before the experiments. The input video images were 
130 (in horizontal) by 100 (in vertical) pixels; images were 
grey scale ranging from 0 to 255 (parameter without unit, 
similar parameters hereafter will not be restated). The lateral 
inhibition spreads to its neighbour 1 layer away and with one 
frame delay. The local inhibition weight is set as shown in 
Figure 4. Other parameters are listed in Table 1. These 
parameters are tuned manually based on the early pilot 
experiments and will not be changed in the following 
experiments unless stated. 

The LGMD based collision detection system is written in 
Matlab (the MathWorks, Inc., USA). The computer used in 
the experiments is a PC (Dell Precision 450) with one 
2.40GHz CPU and Windows XP operating system. The 
communication between the computer and the robot is via 
serial port with Baud rate at 9600 bits/s. A USB frame grabber 
(Hauppauge Computer Works Ltd. UK) and video device 
access software Video for Matlab (VFM) (University of East 
Anglia, UK) are used to obtain live image input.  

 

B.  Off-line tests 
The results of off-line tests can be fairly compared since the 

network can be challenged with the same visual images 
repeatedly. In the following off-line tests, we use recorded 
video clips to test and compare the collision detection 
systems.  

 
1)  Tests under simulated background 

Background details but not colliding objects sometimes 
cause excitations. Since the level of a computer simulated 
background can be easily added into images and controlled in 
the experiment, we will use computer generated random dots 
to simulate the background in the off-line tests.  

A video clip with 90 frames was recorded using a robot 
approaching a block at speed 5.6cm/s and frame rate at 24Hz, 
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example frames are shown in Figure 5 (a). Isolated excitations 
are generated using random values added to the input images. 
For example, at frame f, the random values are  
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where κn is a scale representing the level of background 
caused image noise (shorted to noise hereafter) and will be set 
from 0 to 60 units with increase step 10, function rand(1) will 
generate a uniform distribution value between (0,1). Noises at 
different pixels and the successive frames are independent. An 
element at (x,y) in the input image to the LGMD neural 
network will be, 
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The averaged excitation (averaged from 100 frames) in 

each frame distributed to each isolated L cell (or pixel) caused 
by these simulated noise is around (3.32, 6.60, 9.88, 13.20, 
16.52, 19.80) for noise levels of (10, 20, 30, 40, 50, 60) 
respectively.  

The LGMD based neural networks were challenged with 
the video clip and results are shown and compared in Figure 
5. The network with GD processing worked well when κn was 
less or equal to 50; the collisions were consistently detected at 
frame 84 (Figure 5, b). The curves climb up sharply when 
collision is imminent. As a comparison, a similar network but 
without GD processing was also tested with the same video 
sequence and the results shown in Figure 5 c; the threshold 
has been reset to ensure both networks detect collision at 
frame 84, when no image noise presented. However, with this 
threshold the network without GD processing will inevitably 
fail when noise, i.e. complex background, is presented as 
shown in the figure. The GD processing has significantly 
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Fig.7 A diagram of the Khepera robot’s (K-team, Switzerland) visual collision 
detection system and its connection with the motor control unit. The images 
are captured by a CCD camera mounted on the robot and are fed to the LGMD 
based neural network. Spikes are generated by the neural network and are 
passed to a motor control unit which has only one pattern of reaction. The 
motor control unit can be activated by four successive spikes. It controls the 
two wheels of the Khepera robot and makes the robot turn in one direction, 
clockwise. The turning angles are generated randomly within lower and upper 
limits. In the real time experiments, further background of the environment 
was a typical lab not excluded. 
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(d)                                   (e)                                   (f) 

 
Fig.8 The robot has moved for 15 seconds within an arena at speed 4.8cm/s. 
(a) The robot trajectory within the arena; the trajectory is indicated by bold 
lines. Three times of collision were detected by the LGMD based collision 
detection system and three turns were conducted. (b) The LGMD sigmoid 
membrane potential (bold red solid line), spikes (dashed line with stars at the 
peaks) and the threshold (solid horizontal straight line). The three collisions 
detected were indicated with 4 successive spikes. (c).The FFM during the 
movement. It reflects the changed contrast intensity after each turn. (d). The 
scene of the first turn and the image after GD processing. (e) The scene of the 
second turn and the image after GD processing. (f) The scene of the third turn 
and the image after GD processing. 
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improved the network’s robustness in these cases. 
 
2)  Test under real background generated image noise 

The network was also challenged with clips captured by 
robot approaching an inverted V shaped object before a 
complex background (Figure 6 a, b) at different speeds. The V 
shaped object was placed on a table 50cm away from the wall 
which was decorated with textured slow drifting stripes of 
paper. The object is 7.5cm high. Sample frames of the two 
video clips are shown in Figure 6 (a) and (b), the approaching 
speeds were 3.2cm/s and 9.6cm/s respectively. Again, the 
networks with GD and without GD processing were 
compared. The results are shown in Figure 6 (c-d).   

With GD processing in G layer, the neural network 
responded most differently to non-colliding scenes and 
imminent colliding objects; it detected the colliding object at 
different approaching speeds, i.e., at frame 83 for the lower 
speed video and at frame 47 for the high speed video. 
However, without GD processing, the network was unable to 
detect collision at all as shown in the Figure 6 (c) and (d) 
since there is no room to set a proper threshold. These off-line 
tests may suggest that with edge enhancement, the network 
can detect imminent collision robustly, especially on an open, 
complex background.  

 

C.  Real Time Tests  
In the off-line tests, the objects and scenes were known in 

advance or remaining unchanged for each new test. Moving 
autonomously within arenas might cause the robot to face new 
and unpredictable situations. To test if the collision detection 
system works reliably, the best way is to challenge it with real 
world situations in real time. 

 
1)  Environmental set up 

In the real time experiments, the LGMD based neural 
network (with GD processing if not indicated otherwise in the 
following parts) together with FFM is integrated with a 
Khepera robot (K-team, Switzerland) (Figure 7). The robot is 
controlled by a motor control unit, which can be triggered by 
several (4 in this study) successive spikes from the LGMD 
cell and outputs two commands to the left and right wheels to 
control the robot’s turning behaviour. The luminance intensity 
is deliberately not controlled; however, the light from above 
the arenas was measured in the experiments from 86µw/cm2 to 
130µw/cm2 if not stated differently. 

As mentioned in the introduction, previous experiment [4] 
demonstrated the ability of a LGMD neural network to avoid 
collision in an arena with a simple background. Since the 
presented LGMD based collision detection system is aiming 
to tackle challenges in a more complex situation, all the arenas 
used in the experiments will have complex backgrounds. 

 
In the autonomous navigating experiments, the robot was 

allowed to move at a speed within an arena for a period of 
time, for example, 15 seconds. Once it detected an imminent 

collision, it stopped and turned before continuing its straight 
line path. The turning speed is set to be 3.2cm/s for the left 
wheel and -3.2cm/s for the right. The turning angle was 
controlled by time tα and  

 
)1(randtt con λα +=                                (21) 

 
where tcon is a constant and set to 0.7 second in the 
experiment, λ is a scale and set to 0.25 and rand(1) is a 
function to generate uniform random numbers between 0 to 1. 
Therefore, the period of time for the robot to turn is between 
0.7~0.95 seconds. 

In the following experiments, unless otherwise stated, the 
visual input to the LGMD neural network will be shut during 
turning; the LGMD based neural network will be the one with 
GD processing. The trajectories of the robot are recorded with 
a webcam (Trust 380 USB 2.0 SPACEC@M, 
http://www.trust.com) hanging above the arena and are 
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(d)                           (e) 

 
Fig.9 (a), the effects of the FFM regulated threshold. The threshold is in solid 
straight line, sigmoid membrane potential is indicated by circles for each 
frame and spikes represented by upper stars. Collisions were detected at frame 
45 and frame 102, and indicated by dotted vertical lines. (b), the image at 
frame 45. (c), the image after GD processing at frame 45. (d), the image at 
frame 102. (e), the image after GD processing at frame 102. In the images, 
white represented the highest value and black represented the lowest. 
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extracted via an off-line trace extracting programme written in 
Matlab. In the trace extracting programme, template matching 
method [9] is used to locate the robot position in each frame 
with updated templates and calibrating points.  

 
2) Experiments and results 

A short robot movement (15 seconds, speed at 4.8cm/s) was 
conducted to test and show the mechanism of the collision 
detection system. Results are shown in Figure 8. Three 
imminent collisions were successfully detected (Figure 8 a) at 
frame no.44, no.127 and no.250 respectively (Figure 8, b). 
The membrane potential threshold jumped to a higher level 
when the robot turned and faced a new scene because of the 
change in FFM (Figure 8, b). The three scenes and processed 
images, just when the collisions were detected, were also 
shown in the figure. The stripes on the table, wires and other 
small objects were filtered out by the GD processing. Only the 

expanding edges, the feature which is used by the detection 
system, remained. This made the neural network more robust 
as it only concentrated on colliding objects. 

The FFM sometimes can affect the detection moment in 
several frames, as shown in the results (Figure 9) from an 
experiment in which two collisions were detected in time; the 

collision avoidance behaviour would be either several frames 
later for the first colliding object or several frames earlier for 
the second one if without the mediation by FFM. 

Further experiments were carried out to show how the robot 
behaved within an arena at different speeds (Figure 10). With 
the speed of 6.4cm/s, the robot sometimes was quite close to 
the object before it detected collision and turned (Figure 10, a) 
as less excitation occurred due to smaller changes in 
successive images. It was found that at higher speeds (9.6cm/s 
and 12.8cm/s) the robot increased its distance from the blocks 
(Figure 10, b, c). This was because more excitation was 
caused by higher speeds as the change in image between 
successive frames was larger. 

The collision detection distance was found to increase 
reliably with the increase in approach speed in two 
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Fig.10 The robot moves autonomously within an arena at different speeds for 
60 seconds. (a) robot speed is 6.4cm/s; (b) robot speed is 9.6cm/s; (c) robot 
speed is 12.8cm/s. 
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(b) 

 
Fig.11 The detection distance versus robot speeds. (a), the robot approaching 
two blocks with several blocks scattered on the background; the data is 
collected with robot’s speed changed in the order of, 2.4-4.8-7.2-9.6-12-14.4-
16.6-19.2, 19.2-16.6-14.4-12-9.6-7.2-4.8-2.4, 2.4-4.8… till 5 groups of data 
were collected. (b), the robot approaching an A shaped object with different 
speeds; data is collect in the same way as that in (a). Data (mean and standard 
deviation) at each speed level is averaged from five times of the experiments. 
Robot was placed on the mark 25cm away and directed to the colliding objects 
before a trial started. The moving direction of the robot was calibrated at the 
start position for each trial using a TV monitor. The detection distance refers 
to distance between robot and the colliding objects. 
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experiments that have been done with different colliding 
objects, as shown in Figure 11. The collision detection 
distance here refers to the distance between the robot and the 
colliding object when an imminent collision is detected. In the 
experiments, the robot was approaching the two blocks 
(Figure 11 a) and the inverted V shaped object (Figure 11 b) 
respectively with different speeds and stopped once an 
imminent collision was detected.  

When some of the blocks were changed to other types of 
objects, the neural network also worked quite well; navigating 
a course about 60 seconds, 12 collisions were detected and 
avoided as indicated in the figures (Figure 12, a and b). Mugs, 

strange shaped blocks and curved paper were all successfully 
detected by the system (Figure 12, c~f).  

We want to see if the system works in extreme conditions. 
As shown in Figure 13, three experiments have been done to 
test the system in three scenarios: (1) very dark with 
luminance intensity at 17µw/cm2 (Ealing Electro-Optics, 
Holliston, MA, USA), (2) partly in sunlight 
(917~1,274µw/cm2), and (3) very bright sunlight 
(3,240µw/cm2) with long shadows. The experiments showed 
that the robot can still detect collision without any difficulty in 
these situations. Interestingly, it detected collision very early 

when facing long shadows (Figure 13, c) because the system 
detecting objects relying on the contrast. 
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(c)                        (d)                        (e)                         (f) 

 
Fig.12 The robot has moved for 60 seconds within an arena surrounded by 
different (by shape, colour and material) objects at speed 6.4cm/s. (a) The 
robot trajectory within the arena. The trajectory is indicated by bold lines. 12 
times of collision were detected by the LGMD based collision detection 
system and 12 turns were conducted. (b) The LGMD sigmoid membrane 
potential (bold solid line), spikes (upper stars) and the threshold (solid straight 
line). (c)~(f). Some of the scenes when imminent collisions were detected and 
their corresponded images after GD processing. 
 

 

 

 
(a) 

 
(b) 

   
(c) 

 
Fig.13 The performance of the robot with the LGMD based collision detection 
system in extreme conditions. (a) extremely dark (17µw/cm2), robot speed is 
6.4cm/s; (b) partly in mild sunlight (917~1,274µw/cm2), robot speed is 
6.4cm/s; (c) in bright sunlight (3,240µw/cm2) with long shadows, robot speed 
is 4.8cm/s.  
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D. Further discussions 
In the above sections, the presented LGMD based collision 

detection system has been tested using both off-line and real 
time tests. GD processing enhances the key features of a 
colliding object. The collision detection system demonstrated 
a reliable ability to detect collision in different situations with 
complex backgrounds, regardless of the shape, material or 
colour of the colliding objects. The system allows the robot to 
navigate in an unstructured, complex environment without 
intensive computing cost.  

For many species of animal, vision plays a key role in their 
survival. Different visual based navigation methods have also 
been proposed towards autonomous robots (for example, [22, 
11]). Nowadays, visual sensors are becoming very cheap and 
reliable. This makes it possible for many mobile machines 
(e.g., mobile robots, cars, boats, planes and some toys) 
equipped with visual sensors and visual-based navigation 
systems to avoid unwanted collision automatically in the real 
world.  

However, the locust LGMD is only one example of a visual 
feature detector that has evolved within the visual system of 
insects. In the insects’ brain, there are numerous interneurons 
related to vision working together to extract the plentiful 
visual cues simultaneously. To separate/extract other visual 
cues from the dynamic scenes simultaneously, other 
specialized neurons need to be integrated into the system in 
the future. For example, directional selective neurons (e.g., 
[24, 25] in locust, [5] in fly, [36] in rabbit) may be used to 
detect high speed big translating objects which project big 
areas on the retina. The further ongoing investigations of the 
LGMD and its postsynaptic interneuron in locust also provide 
new ideas and alternative ways to further modify the system 
(for example, [13, 32, 33]).  

Although the presented LGMD based collision detection 
system’s robustness was demonstrated in the experiments, it 
still needs to be noted that the detection system is entirely 
reliant on an objects’ contrast against background. The system 
does fail to detect a colliding object if the object has no 
contrast to its background as seen by the robot.  

 

IV. CONCLUSIONS 
 
In this paper, we proposed a modified LGMD based neural 

network as a real time robust collision detector with edge 
enhancement, especially for collision detection against 
complex backgrounds. The excitations (represents expanded, 
moving edges) extracted in the input images are further 
enhanced with GD processing. Experiments showed that the 
presented LGMD based neural network worked reliably in the 
situations with complex backgrounds. Integrated with a robot, 
the collision detection system demonstrated its reliable ability 
in detecting imminent collisions in wide range of robot speeds 
and situations; therefore enabling the robot to autonomously 
avoid collision within arenas with only visual input.  

In the future, other neurons, directional selective neurons 
may be integrated into the system to extract other visual cues 
simultaneously from the same sequential images to cope with 
fast translating objects.  
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